Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT While nova eruptions produce some of the most common and dramatic dust formation episodes among astrophysical transients, the demographics of dust-forming novae remain poorly understood. Here, we present a statistical study of dust formation in 40 novae with high-quality optical/IR light curves, quantitatively distinguishing dust-forming from non-dust-forming novae while exploring the properties of the dust events. We find that 50–70 per cent of novae produce dust, significantly higher than previous estimates. Dust-forming novae can be separated from those that do not show dust formation by using the largest redward ($V-K$) colour change from peak visible brightness; ($V-J$) or ($V-H$) offer useful but less sensitive constraints. This makes optical+IR photometry a powerful tool to quantify dust formation in novae. We find that novae detected in GeV $$\gamma$$-rays by Fermi-LAT appear to form dust more often than novae not detected by Fermi, implying a possible connection between $$\gamma$$-ray-producing shocks and dust production. We also find that novae that evolve very quickly ($$t_2 < 10$$ d) are much less likely to form dust, in agreement with previous findings. We confirm a correlation between $$t_2$$ and the time of the onset of dust formation (which occurs $$\sim$$1 week–3 months after maximum light), but conclude that it is primarily an observational artefact driven by dust formation determining when a nova drops 2 mag below peak. The significant fraction of novae that form dust make them ideal laboratories in our Galactic backyard to tackle the puzzle of dust formation around explosive transients.more » « less
- 
            Abstract We present a systematic study of the BVRI colours of novae over the course of their eruptions. Where possible, interstellar reddening was measured using the equivalent widths of Diffuse Interstellar Bands (DIBs). Some novae lack spectra with sufficient resolution and signal-to-noise ratios; therefore, we supplement as necessary with 3D and 2D dust maps. Utilising only novae with DIB- or 3D-map-based E(B − V), we find an average intrinsic (B − V)0 colour of novae at V-band light curve peak of 0.20 with a standard deviation of 0.31, based on 25 novae. When the light curve has declined by 2 magnitudes (t2), we find an average (B − V)0 = −0.03 with a standard deviation of 0.19. These average colours are consistent with previous findings, although the spreads are larger than previously found due to more accurate reddening estimates. We also examined the intrinsic (R − I)0 and (V − R)0 colours across our sample. These colours behave similarly to (B − V)0, except that the (V − R)0 colour gets redder after peak, likely due to the contributions of emission line flux. We searched for correlations between nova colours and t2, peak V-band absolute magnitude, and GeV γ-ray luminosity, but find no statistically significant correlations. Nova colours can therefore be used as standard “crayons” to estimate interstellar reddening from photometry alone, with 0.2–0.3 mag uncertainty. We present a novel Bayesian strategy for estimating distances to Galactic novae based on these E(B − V) measurements, independent of assumptions about luminosity, built using 3D dust maps and a stellar mass model of the Milky Way.more » « lessFree, publicly-accessible full text available March 11, 2026
- 
            ABSTRACT The discovery that many classical novae produce detectable GeV γ-ray emission has raised the question of the role of shocks in nova eruptions. Here, we use radio observations of nova V809 Cep (nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about 6 weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times – more than 6 months or so into the eruption – is consistent with thermal emission from $$10^{-4}\, {\rm M}_\odot$$ of freely expanding, 104 K ejecta. At 4.6 and 7.4 GHz, however, the radio light curves display an initial early-time peak 76 d after the discovery of the eruption in the optical (t0). The brightness temperature at 4.6 GHz on day 76 was greater than 105 K, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free–free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.more » « less
- 
            ABSTRACT Peaking at 3.7 mag on 2020 July 11, YZ Ret was the second-brightest nova of the decade. The nova’s moderate proximity (2.7 kpc, from Gaia) provided an opportunity to explore its multiwavelength properties in great detail. Here, we report on YZ Ret as part of a long-term project to identify the physical mechanisms responsible for high-energy emission in classical novae. We use simultaneous Fermi/LAT and NuSTAR observations complemented by XMM–Newton X-ray grating spectroscopy to probe the physical parameters of the shocked ejecta and the nova-hosting white dwarf. The XMM–Newton observations revealed a supersoft X-ray emission which is dominated by emission lines of C v, C vi, N vi, N vii, and O viii rather than a blackbody-like continuum, suggesting CO-composition of the white dwarf in a high-inclination binary system. Fermi/LAT-detected YZ Ret for 15 d with the γ-ray spectrum best described by a power law with an exponential cut-off at 1.9 ± 0.6 GeV. In stark contrast with theoretical predictions and in keeping with previous NuSTAR observations of Fermi-detected classical novae (V5855 Sgr and V906 Car), the 3.5–78-keV X-ray emission is found to be two orders of magnitude fainter than the GeV emission. The X-ray emission observed by NuSTAR is consistent with a single-temperature thermal plasma model. We do not detect a non-thermal tail of the GeV emission expected to extend down to the NuSTAR band. NuSTAR observations continue to challenge theories of high-energy emission from shocks in novae.more » « less
- 
            Abstract We present radio observations (1–40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1–263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission ( T B > 5 × 10 4 K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.more » « less
- 
            null (Ed.)ABSTRACT Shocks in γ-ray emitting classical novae are expected to produce bright thermal and non-thermal X-rays. We test this prediction with simultaneous NuSTAR and Fermi/LAT observations of nova V906 Car, which exhibited the brightest GeV γ-ray emission to date. The nova is detected in hard X-rays while it is still γ-ray bright, but contrary to simple theoretical expectations, the detected 3.5–78 keV emission of V906 Car is much weaker than the simultaneously observed >100 MeV emission. No non-thermal X-ray emission is detected, and our deep limits imply that the γ-rays are likely hadronic. After correcting for substantial absorption (NH ≈ 2 × 1023 cm−2), the thermal X-ray luminosity (from a 9 keV optically thin plasma) is just ∼2 per cent of the γ-ray luminosity. We consider possible explanations for the low thermal X-ray luminosity, including the X-rays being suppressed by corrugated, radiative shock fronts or the X-rays from the γ-ray producing shock are hidden behind an even larger absorbing column (NH > 1025 cm−2). Adding XMM–Newton and Swift/XRT observations to our analysis, we find that the evolution of the intrinsic X-ray absorption requires the nova shell to be expelled 24 d after the outburst onset. The X-ray spectra show that the ejecta are enhanced in nitrogen and oxygen, and the nova occurred on the surface of a CO-type white dwarf. We see no indication of a distinct supersoft phase in the X-ray light curve, which, after considering the absorption effects, may point to a low mass of the white dwarf hosting the nova.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
